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In systems with midplane reflection symmetry the dominant spatial resonance is the 1:3 resonance. Numeri-
cal continuation is used to study this and otherK+2 resonances in two-dimensional convection between
no-slip perfectly conducting horizontal plates. Periodic boundary conditions are imposed in the horizontal.
These resonances influence the process of wave number selection at moderate Rayleigh numbers through the
generation of hybrid solutions, and thereby modify the Eckhaus picture of wave number selection. Unlike the
better known mixed modes the hybrid solutions have the same symmetry as a pair of primary rolls. Both hybrid
and symmetry-breaking mixed modes are computed and their linear stability properties with respect to pertur-
bations preserving different spatial periods are determined. A complete description of the effects of midplane
reflection on wave number selection emerges. Only steady solutions are considered and the Prandtl number is
fixed ato=10.[S1063-651X98)05709-2

PACS numbdss): 47.20.Ky, 05.45+b

I. INTRODUCTION about from the excitation of the secomdrtical mode of the
system.

The generation of mean flows by Reynolds stresses is a With this motivation in mind we focus on two-
problem of fundamental importance in fluid dynamics. Al- dimensional Rayleigh-Beard convection with periodic
though of primary importance in the theory of turbulence andooundary conditions in the horizontal, choosing a large spa-
turbulent convection, closely related issues arise in connedial period compared to the period of the primary roll pattern.
tion with ordered structures such as are present in convectiofince we impose identical boundary conditions at the top and
at moderate Rayleigh numbers. Many studies of convectiokottom, the resulting system has an additional midplane re-
employ the analytically convenient stress-free boundary corflection symmetry. The usual perception is that this symme-
ditions at top and bottom. The resulting system is then indry is irrelevant in two dimensions. We show here that in
variant under Galilean boosts, i.e., the boundaries do ndaterally unbounded systems this is not in fact so. This is
select a preferred rest frame. As a result convection rolls areecause of the role played by spatial resonances. The re-
neutrally stable with respect to such boosts, and the solutiorguirement that the amplitude equations commute with the
are only defined up to an arbitrary constant horizontal velocmidplane reflection symmetry changes the structure of the
ity. For spatially periodic patterns this arbitrariness is of nol:2 resonance and gives the 1:3 resonance unexpected
consequence. However, spatially inhomogeneous pattergominence. This is sdespitethe fact that the 1:2 resonance
can drive horizontal mean flows, and do so arbitrarily closeoccurs at lower Rayleigh numbers, and is a consequence of
to onset of the primary convective instability. With no-slip the fact in the 1:2 resonance the midplane reflection symme-
boundary conditions at top and bottom the system is ndry pushes the resonant terms to fifth ordét7] thereby
longer Galilean invariant and the excitation of mean flowsdestroying much of the dramatic behavior present in the ge-
becomes harder. Such flows are now the result of secondangeric casd8]. In particular, pure modes with wave numbers
symmetry-breaking instabilitielsl]. Typically these arise as n=1,2 now bifurcate from the conduction state. In contrast,
a result of a coherent tilt of the convection cells; such a tiltthe 1:3 resonance is unaffected by the midplane reflection
generates a nonzero Reynolds stress, which in turn drives tland the resonant terms enter at third order. As a consequence
associated mean flow. This mechanism is well known andhen=1 mode becomeslaybrid state and the effects of this
has been explored in several different conte@s]. It is  resonance much more dramatic. This is becausenthé
particularly important when the cells anarrow[4,5]. Inthe  andn=3 states have the same symmetry properties and so
studies mentioned above the cell width is imposed arbitrarilynteract much more strongly than the correspondingl
and is smaller than that predicted on the basis of linear steandn=2 states in the 1:2 interaction. In this paper we ex-
bility theory of the conduction state. The question thereforeamine the role played by the 1:3 resonance and show that it
arises whether there are mechanisms responsible for genemd other odd:odd resonances play a major role in stabilizing
ating mean flows that operate for cells of the naturally predifferent types of solutions. For the study we employ sym-
ferred scales. To this end we investigate secondary branchesetric no-slip boundary conditions at the top and bottom but
arising from the interaction of two distinbibrizontalmodes.  do not impose any restrictions on the parity of the solutions
We find that, depending on their symmetries, some of thesi the vertical. We identify two types of steady solutions,
are accompanied by large-scale mean flows, while otherghose with the same symmetry as the primary r@ilsreafter
are not. This mechanism for mean flow generation isreferred to asybrid solutiong and those that break this sym-
distinct from the coherent tilt alluded to above, which comesmetry (hereafter referred to awixedsolutionsg. The former
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involve a contribution from two odd modes which varies a discussion in Sec. V. The essential group-theoretic consid-
gradually with the bifurcation parameter, and may arise in @rations are summarized in two Appendixes.

primary bifurcation. The latter are only produced in second-

ary bifurcations but may be accompanied by mean flows. [l. THE EQUATIONS AND THEIR ANALYSIS

Although none of the nonzero-mean-flow solutions are stable

atthe low to moderf':\.Ie Raylelgh numberg pon;udered, we findection in a periodic horizontal layer and include the possi-
that they play a critical role in the stabilization of various bility of generating a nontrivial mean flow. Consequently,

solution branches that are unstable near onset, and as a respyit sit the solenoidal velocity fieldl(x,z,t) into its mean
obtain a fairly complete understanding of the multiplicity of 5,4 fluctuating components

coexisting solutions near onset. We do not consider here the
large Rayleigh numbers studied by Padtal. [5] at which v=U(z,t)+V'(x,z,1),
oscillations set in. - _

The present paper sheds considerable light on the proceddere U=(U,0), V'=(—dx".dxx") andVv'=x"=0, with
of wave number selection far from onset. Close to onset thid1€ overline indicating an average over the horizontal period.
process is described by the Ginzburg-Landau equation. ThE® temperatur@(x,z,t) is written as
resulting Eckhaus picture of wave number selection is based T=1—2z+6(x,2,1).
on the sideband instability of plane wave solutions of this
equation within their domain of existence. The Busse “bal-Equations folJ, x’, and# are obtained from the horizontal
loon” summarizes the extension of calculations of this typeaverage of the Navier-Stokes equations, the deviation of the
to larger amplitude rolls and hence to larger values of thevorticity equation from its horizontal average, and the heat
Rayleigh number Ra. However, all such calculations areééquation. In nondimensional form, we obtain
based on the stability properties of a single roll state with
wave number near the critical wave numbder. Conse-
qguently spatial resonances are absent from the analysis.
Moreover, the possibility that the roll state becomes unstable
to instabilities generating mean flows is also not considered.

We consider two-dimensional Boussinesq thermal con-

(0= 0d2,)U+ dw0;=0, (1a)
(+Udy— 0V ' +Raca 0+ d2Udex’'

Ax" o) dx' o)

In this paper we find that both of these complications be- + - =0, (1b)
come important as the Rayleigh number is increased, and I(x,2) a(x.2)

that both modify the stability properties of the basic roll state ax',0)

in new ways. The paper can be thought of as a generalization (9 +Ud,— V20— dex' +———==0, (19
of the work of Mizushima and Fujimurg9] (hereafter re- a(x.2)

ferred to as MFon the 1:3 resonance with no-slip boundary \yherew’ = —V2y', lengths and time have been expressed in

conditions. These authors were the first to observe, using gnits of the layer depth and thermal diffusion time in the

coup_lgd amplitude equatiqn _d_escription,. that the resonanc@rtical, respectively, and Ra and are the Rayleigh and
modified the type and multiplicity of solutions present abovepandtl numbers. The boundary conditions are taken to be

threshold, and concluded that the Eckhaus picture of wavBeyiggic inx with periodL and no-slip, perfectly conducting
number selection was oversimplified. However, the MF apy,,

proach suffers from the limited validity of the amplitude

equations employed. In addition these equations were con- U=x'=d,x'=6=0 at z==*3. (1d)
structed only for modes of like parity in the vertical. In the

present paper we avoid both limitations by eschewing thd'he equations are thus defined on the domaiz)(e [O,L]
amplitude equation approach entirely and resorting to nux|[— %, 2]. The resulting problem is solved numerically us-
merical continuation techniques to follow solution branchesing a spectral Galerkin-Fourier techniquexnand colloca-
from threshold towards higher Rayleigh numbers. Thesgion Chebyshev ire [11].

techniques enable us to trace the stability changes either with Equations(1) are equivariant under the two reflections,
increasing Ra or with increasing spatial period and to iden-

tify the secondary states produced in the resulting bifurca- Ro: (X,2)—(=%,2), (U,x",0)—(=U,—x",0),

tions. We compute such secondary states and classify them (29
according to their symmetry properties and associated mean
flows. The outcome is a fully nonlinear picture of wave num-
ber selection in systems with midplane reflection symmetry.
This picture resembles that put forward for the Eckhaus ingnd translations through a distarice

stability in Ref.[10] but includes additional destabilizing

mechanisms absent from the Ginzburg-Landau description. T (%2)—(x+l,2), (Ux',0)—(U,x",0). (20
o B e ok oo e e EeCionza s i respect (0 an abiarly chosen
the primary roll states in the fully nonlinear regime and theirOMgmn N reflectlonsR|0 with respect to a plane=lo, say,
stability properties. The results for Prandtl number 10 are ~ are obtained by conjugatioR, =T, RoT_, . These symme-
presented in Sec. lll. In Sec. IV we provide a theoreticaltries generate the symmetry grolip=0(2)XZ,. The con-
explanation of some of our results. The paper concludes withuction stateU= y’'=6=0 is invariant under this group.

K: (X,Z)H(X,_Z), (U,X',Q)H(U,_X"_o),
(2b)
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The primary instability of this state is to a nontrivial roll state 10000
(0,x',0) that breaks the translation symmeffy but is in-
variant under a reerctioR|O for an appropriatd, and the

shift-reflect operation T, ok, where a=L/n is the pattern
wavelength(see Appendix A Each of these symmetries is a
generalized reflection in the sense that its square is the iden-
tity. It follows that the symmetry group of such a roll state is
G=Z,XZ,=D,, a subgroup 0f0(2)XZ, [5]. In contrast

an individual roll is invariant only under a 180° rotation. For

a pattern with a node at=0 this symmetry i =R,,« and

is sometimes referred to agpaint symmetry. This symmetry
acts on the fields as follows: 2500 -

7500

5000

Rayleigh

P: (x,z)a(g—x,—z), (U,x",0)—(—=U,x',—0).

(2d) 0 2 4 6 8 10 12
Note thatP=RyT o« (sinceT,ORoT,Oz Ry) and soPeG.
In the following we shall use the symb#l to refer to the FIG. 1. Marginal stability curves for several multiroll solutions.
reflectionR, / for suitable b,

Note that the symmetrig of the primary flow implies that In order to study the stability of a multiroll solution, say a

periodic solution withn pairs of rolls each of length, we

no mean flow is presenti(z)=0. This is not necessarily so . . ; ) ;
for the states produced in secondary bifurcations from themUSt. consider "’}” perturbations with pen_mm. T_he basic
solution has perioé and hence the associated linear opera-

primary rolls, as discussed below. These bifurcations typi-t so h iod. F A t th K that th
cally break the symmetré of the roll state and we summa- or also has period. -rom rloquet theory we know that the

rize in Appendix A the various possible ways this can hap-set of perturbations can be split up [4<]

pen. W (X.Z eidmaxe)\m’[ B _ 3
Numerically, the presence &, symmetry implies that a {Win(x,2) Fm=0,...n-1, 33
roll state of wavelengtla can be written in the form where

K M W(X,2)=Wn(X+a,z), 3b
X(%2)= 2 2 Xumf m(22)sin(kax), 2 =W 8.2 e
k=1 m=0 andd,,=m/ne[0,1).
K M The casely=0 corresponds to the study of the stability of
0(x,2) = E 2 TinOm(22) cod kax), a single pair of rolls(the n=1 casg since t.he perturbations
k=0 m=0 all have the same periaas the rolls. In this case, as shown
in [5], the perturbations split further into four invariant sub-
relative to a suitable origin. Hete+ mis odd,a=2n/aand  groups. Two of these generate solutions with nonzero mean
the f,(22), gm(22) are suitable combinations of Chebyshev flow U(z), one with the symmetryP and the other with
polynomials satisfying the boundary conditions. If the spatialsymmetryT,,,x (see Appendix A It follows from Egs.(2)
periodL is fixed atL=a the above expansion describes athat in the former case the associated mean flow has an an-
single pair of rolls bifurcating from the conduction state at atisymmetric profile while in the latter the profile is symmet-
given critical Rayleigh number; this Rayleigh number is theric. The remaining two perturbation types produce solutions
same for two pairs of rolls bifurcating in a container of twice that are invariant undeR andG, respectively, and hence do
the lengthL =2a, etc. As a consequence, one can obtain thewot generate mean flows.
neutral stability curve fom pairs of rolls from that for a In the cased# 0 the basic perio@ is now broken and a
single pair of rolls in a domain of width simply by replac-  new pattern with a larger period emerges. If the linear opera-
ing L with nL (see Fig. 1L Thusn=L/a measures the num- tor describing the stability problem is real, the eigenfunctions
ber of roll pairs in a given spatial period; it is also the wavefor the problem withd,, can be obtained by conjugating
number of th(_a state. We say tha(@gtla} resonance OCCUrS  those withd,,_,,; moreoverh ,=A,_m. In this case it suf-
when two different multiroll solutions bifurcate simulta- fices to consider perturbations with, e (0,1/2],
neously from the conduction state. This situation corre-
sponds to the intersection of different neutral stability curves dn,=1/n,...,1/2.
in Fig. 1. In the following we refer to the intersection of two
such curves with wave numbers,n, as ann;:n, reso- In the present problem, the invariance of the primary roll
nance. Note that the first such intersections that are encouselution under the reflection symmetR/imposes the stron-
tered always involvedjacentwave numbers|;—n,|=1).  ger requiremenh,=\,_,, With the corresponding eigen-
However, despite the fact that the k21,k=1,2,..., functions related byr.
resonances are shieldéske Fig. 1, they are responsible for These instabilities produce secondary branches of solu-
a number of states found in the fully nonlinear regime, agions with smaller symmetry. Since these solutions may be
described in Sec. Ill. associated with mean flows we now write
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FIG. 2. Amplitude ez(l/Z)vf(L/4,1/4) of steadyn=1 solu- FIG. 3. Amplitude ez(l/Z)vf(L/4,l/4) of steadyn=1 solu-

tions as a function of the spatial periddfor =10, Ra=3000. tions as a function of the spatial periddfor =10, Ra=6000.
Solid (broken lines denote stablg(unstablg¢ solutions. Only  Solid (broken lines denote stablelunstable solutions. Only
G-symmetric solutions are shown. G-symmetric solutions are shown.

M also reveals that the situation is more complex. The figure

U(z2)= ZO Um@m(22), reveals the presence of two peaks, the higher peak consisting
m of two families of solutions denoted b%; andA, and sepa-
K M rated by a turning pointsaddle-node bifurcationThe lower
_ ikax peak corresponds to a family of solutions denotedBhA,
x(x2) k:ZK mE:O Xl m(22) 87, andB are always unstable. For some periddsill threen
=1 solutions coexist. Thé, andB branches bifurcate to-
K M gether from a branch af=3 multiroll solution(not shown
0(x,2)= > > TenOm(22)€%*, as discussed further below.
k=-K m=0 For this value of the Rayleigh number our results agree
with those obtained by MF. However, at larger Rayleigh
numbers they begin to differ. For example, at=R&000, the
bifurcation diagram for the=1 steady solutions looks like
threepeaks(see Fig. 3. The highest peak corresponds to the
subgroups. . . . . family of solutionsA,; with A, again separated by a saddle-
Since all solutions of interest in this paper are steady W& ode bifurcation. The next peak corresponds to solutions la-

solve Egs.(1) using a Newton-Raphson iterative schemeb :
: ) . : eledB; andB,, while the smallest peak corresponds to a
with K=12M=<24. This resolution suffices for the modest new family of solutions, labele@. SolutionsA,, B, andC

values .Of the Rayleig_h numbt_ar considered. The St"J‘bi"tyare always unstable; this time it is the branchgsand B
properties of the resulting solutions are determined by SOIV'Ehat meet on am—3' branch. whileB, andC meet on alm
- , )

ing the linear stability problem for the perturbatiof. n=>5 branch, neither of which is shown. The nature of these
bifurcations can be gleaned from the bifurcation diagrams
ll. RESULTS shown in Fig. 4. Figure @) shows the first Fourier coeffi-

This section is divided into two parts. In the first we Ciéntxs(z= 7) for bothn=1 andn=3 solutions as a func-
show, for fixed Rayleigh number, the effect of the k:#21  tion of the spatial period. near the bifurcation point, indi-
resonances on the generation of steady solutions that hagéted by a diamond in Fig. 3. The figure reveals the presence
the same symmetries as the primary convection rolls. In thef a transcritical bifurcation from the=3 state that gives
second part, we choose two values of the spatial period clogése to the two familiesA, and B; of n=1 states. Then
to L* =3.647(for which the 1:3 resonance takes plaaand =3 state has two unstable eigenvalues, each of double mul-
consider the influence afther resonances as the Rayleigh tiplicity prior to the transcritical bifurcationl(<2.965). This
number is increased. All results are obtained for Prandtis a consequence of the fact that the primary instability to the
numbero=10. n=23 state is preceded by loss of stability he=2 andn
=1 states; the unstable eigenvalues of the conduction state
are inherited by then=3 branch. At the transcritical bifur-

) ) o ) ) cation (L=2.965) one of these pairs moves to the left half of

Primary roll solutions consisting of a single pair of rolls ¢ complex plane so that fér>2.965 then=3 branch has
(n=1) have been calculated at Rayleigh number~RB00  only one unstable eigenvalue of double multiplicity. In con-
and thelr_sta_\blllty_analyzed. One exp_ects that such solutiongast theA, andB, branches each have three unstable eigen-
do not exist if the |mp_osed spatial peribds e_lthertoo small ~ values near the bifurcation, witB, acquiring a fourth un-
or too large, for a fixed value of Ra. This expectation isgiaple eigenvalue beyond the saddle-node bifurcation.
borne out in Fig. 2, which shows the amplitude of thesegityrcations of this type have been found in two-dimensional
solutions[as measured by=3v2(x=%,z=1)] as a func- thermosolutal convectiofil3]. In contrast, the bifurcation
tion of the spatial period.; dashed lines represent unstablethat is responsible for the familié3, andC of n=1 solu-
solutions and solid lines stable ones. However, the figurdions that bifurcate from am=5 state at the point marked

where nowa=2mx/L. The stability of these solutions is cal-
culated as for thé,-symmetric rolls except that now the
perturbations for thely;=0 case no longer split into four

A. Transitions at constant Rayleigh number
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FIG. 5. Streamlines of the different steady 1 solutions at_
=3.8, L=5, andL=6 wheno=10, Ra= 6000. All of these solu-
tions areG symmetric.

curve that appears to emerge from the pda where the

1:3 resonance is located, while the circles fall on a curve that
appears to emerge from the locatién 5 of the 1:5 reso-
nance. Despite the differences between the different sets of
streamlines in Fig. &ll of the solutions shown are properly
thought of ashybrid solutions. This is because in the pres-
ence of other modes¢1) there isno puren=1 mode(see
Appendix B. In particular, while theA; state shown in Fig.

5 looks like a pure mode it does in fact contain a small
contribution from then=3 state; this is simply a conse-
quence of the fact that this is a nonlinear state. This contri-
bution gradually increases as one traversesAhéeranch,

and becomes visible to the naked eye somewhere near the
turning point. Thus there is no sharp distinction between the

branche#\; andA, and no bifurcation is associated with the
transformation of the streamlines Af into those ofA,.

This transformation continues alog, which at its end
looks like a puren=3 state. Indeed, the resulting bifurcation
FIG. 4. (a) The transcritical bifurcation for Ra6000 fromn can be detected as &= 1/3 instability of then=3 state.
=3 multirolls ton=1 solutions, shown in terms of the first Fourier Clearly, this type of gradual transition is only possible be-
coefficient, y;(z= ), as a function ofL. (b) The bifurcation for ~ tween states of like symmetry, and it is this property that
Ra= 6000 fromn=5 multirolls ton=1 solutions, shown in terms Makes the odd:odd resonances special. A similar statement
of the modulus of the first Fourier coefficierjty;(z= )|, as a  applies to the bifurcation t8, andC from then=5 state. It
function of L. All solutions are unstable. should be noticed that these bifurcationsru result in the

4.5

with a circle in Fig. 3 is quite different, and boBy, andC 7000
bifurcate in thesamedirection[Fig. 4(b)]. Both bifurcations ]
are discussed in Sec. IV. 6000 1
In Fig. 5 we show, for R& 6000, the streamlines corre-
sponding to the differenh=1 solutions that coexist dt 220007
=3.8, L=5, andL=6. All of these solutions share the sym- %"4000:
metries of a single pair of roll6.e., the symmetrys) and all % |
are unstable except f&k; (L=3.8). The streamlines of the B 2000 -
large amplitude state8;, B;, andL=6 look similar and
have the structure formed in the primary instability. Indeed
: : 2000 -
we can consider the envelope of the three peaks as a single |
family of solutions that has been interrupted by the 1:3 and 1000 . . ' . '
1:5 resonances. It is these resonances that are responsible for 1 2 3 4 5 6
the hybrid structure of the states,, B,, andB,, C, re- L

spectively. This conclusion is supported by Fig. 6, which k|G, 6. The marginal stability curves for=1, n=2, n=3,
shows the critical Rayleigh number as a function of the spaandn=5 modes(solid lineg. Diamonds and open circles denote
tial periodL; the points wheren=3 andn=5 multiroll SO-  the points where=3 andn=5 solutions bifurcate to families of
lutions bifurcate fromn=1 solutions are indicated by dia- hybrid solutions; full circles denote the points where ithe3 state
monds and open circles, respectively. The diamonds fall on acquires stability.
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(a) (b)
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Ra=3000 Ra=6000
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FIG. 7. Amplitudee=(1/2)v2(L/4n,1/4) of different steady multiroll solutions f¢e) Ra= 3000 and(b) Ra=6000 as a function of the
spatial period. for o=10. Solid(broken lines denote stabl@instabl¢ solutions.

acquisition of stability by thev=3 andn=5 branches. As B,. This branch bifurcates from the conduction state at Ra
shown in Fig. 7 these branches, like-2 andn=4, startout  =2711 and is unstable throughout. However, the otier
being unstable. This is because for both=R00 and Ra =1 solutions are still present although they do not appear in
=6000 the first instability is to th@=1 state. As shown 3 primary bifurcation. Instead the familiés andA, appear
below, then=3 states acquire stability with increasing Ra simultaneously afinite amplitude in a saddle-node bifurca-
only as a result of shedding a branchResymmetric states. tion at Ra=3175[Fig. 8(b)]. Initially both are unstable but
The full circles in Fig. 6 indicate the location of this second-the A, branch does acquire stability with increasing Rayleigh
ary bifurcation and suggest that this bifurcation is ultimately,ymper. The streamlines of these three=1 solutions

the consequence of the 2:3 resonance: the full circles all fal\, A, B are displayed in Fig. 5 for Ra6000. We surmise
on a curve that appears to emerge from the pBiyy where

this 2:3 resonance takes place. This resonance thus appear. 238 _
to be responsible for the stability of tlmee=3 multiroll solu- | L=3
tions. Figure 7 summarizes the stability regions for the first
few multiroll states as a function of the spatial perlodor 2.4 1
these two values of Ra.

It will have been noticed that there is a secondary bifur-
cation on theA; branch(see Figs. 2 and)3at which this 2.0 1
branch loses stability. As discussed below, this instability is Nu
associated with a bifurcation to R-invariant state, and
hence with the generation of a state that is accompanied by 1.6
an antisymmetric mean flow. Bifurcations of this type are
absent from the Eckhaus description valid close to threshold.

@)

1.2 1

B. Transitions at constant spatial period

In this section we describe the corresponding results for 2000 4000 6000 8000 10000
L =3 andL=23.8 and increasing Rayleigh number; these val- Rayleigh
ues of L bracket the 1:3 resonance, which occurs at
(L*,Ra)=(3.647,2574). The results are summarized in 2.8 I —
Fig. 8. These figures show all the nonlinear solutions we | L=38
have computed together with their symmetries. The primary
multiroll branches bifurcate from the conduction state in a 24 -
sequence of bifurcations indicated in Fig. 1. Ror 3, the
successive primary bifurcations are to0=2, n=1, n
=3,...,while for L=3.8 the corresponding sequencenis 2.0 -
=2, n=3, n=1,.... Theresulting Nusselt numbers are Nu
shown in Fig. 8 as a function of the Rayleigh number. All
steady solutions obtained with=3 and L=3.8 are in- 1.6 -
cluded. Solid lines represent stalffesymmetric solutions;
these solutions are stable with respectatb perturbations
that fit in a domain of sizé.(=na). The dashed lines indi- 12
cate solutions of this type that are unstable, while the dotted
indicate unstable solutions that are not invariant under the y ' y y
groupG. 2000 4000 6000 8000 10000

ForL=3, then=1 solutions that bifurcate from the con- Rayleigh
duction state at Ra2082 belong to the familyA; and are FIG. 8. Nusselt numbers of the steady solutiong &t =3 and
unstable at onset; they acquire stability at=Rz207 and re-  (b) L=3.8 as a function of the Rayleigh number for- 10. Solid
main stable thereaftdFig. 8@)]. In contrast forlL=3.8 the  (broken lines indicate stablgunstabl¢ G-symmetric solutions;
n=1 solution that appears in a primary bifurcation is of typedotted lines indicate unstable solutions with smaller symmetry.
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L=3, Ra=2300 L=3, Ra=2300

D)

FIG. 10. Streamlines of two steadRsolutions, one bifurcating
from ann=1 solution of typeA,; and the other bifurcating from an
n=1 solution of typeA,, both forL=3.

FIG. 9. Streamlines ofa) a steadyP-symmetric solution with
an antisymmetric mean flow profild 5 that bifurcates from am
=1 solution of typeA; whenL=3 and(b) a steadyR-symmetric

solution that bifurcates from am=3 solution wherL=3.8. o . .
We conclude the description of all the bifurcations that

that the stable rolls computed 4] are of typeA, since the take place for the parameter values of Fig. 8 by considering

othern=1 states that coexist with this solution are all un-2nother subcritical bifurcation that appears from the 1

stable. TheA, solutions were found earlier by Pratal.[5]  Selutions of typeA,. This solution isG invariant and under-
in their study of mean flow generation in two-dimensional90€s ad=0 instability that produces aR-invariant tertiary
convection with spatial periotl=a. solution branch. These solutions are not accompanied by a

WhenL=3 andL=3.8 and the Rayleigh number is re- Mean flow. In Fig. 10 we show the streamlines for a solution
duced then=1 solutions belonging to familp, lose stabil-  ©f this type; here. =3 and Ra-9000. A similar instability

ity (see Figs. 2 and)3This instability is caused by a pertur- Ccurs whenL. =3.8 despite the different origin of tha,
bation with d=0, and gives rise to @-symmetric state Pranch.

accompanied by a mean flow with an antisymmetric profile

(denoted byJ , in Fig. 8). The instability of then=3 muilti- IV. THEORETICAL INTERPRETATION

roll solutions is caused by d=1/3 perturbation that gives A. The transcritical bifurcation

rise to a solution that breaks the basic perid@ but pre- ) .

serves the reflection symmetfgenoted byR in Fig. 8. Both A number of the_numerlcal results_ des_crlbed_above can be
bifurcations are subcritical. Far=3, then=1 solutions of understood quite simply. The following discussion omits the
type A, are unstable for 2082Ra<2207, while then=3 complications arising from reflections i=0 and conse-
solutions are unstable for 3784Ra<8693. In contrast, for quently does not capture all the transitions identified in the
L=3.8 then=1 solutions of typeA, are unstable for 3175 preceding section. However, despite this shortcoming it does

<Ra<4057 while then=3 solutions are unstable for 2412 Shed light on much of the observed behavior.

<Ra=3825 (see Fig. 8 The streamlines corresponding to Consider first the seconc_:iary _bifu_rcation from the-3
the bifurcated solutions) , andR are shown in Fig. 9: the State {0 ther=1 states described in Fig(&. Then=3 state

U, solution for L=3 is shown at R&2300 while theR is invariant under translations by'3; such translations may

solution that bifurcates from the=3 state wherl. =3.8 is  °€ Viewed as rotations by723. In addition this state is re-
shown at Ra 4300. flection invariant(cf. [15]). Consequently the=3 state has
Besides the bifurcations that stabilize the: 1 solutions 1€ SymmetryD of rotations and reflections of an equilat-
of type A,, we have also investigated the subsequent bifur_(—:~ral triangle. The observed steady state bifurcation fror_n th|§
ate breaks this symmetry and can therefore be described in

cations as the Rayleigh number is reduced. Figure 8 shov\g[%t f d ter that th tributi
that for both values ofL considered a new steady erms of an order parameter that measures the contribution

R-symmetric solution bifurcates subcritically between thefrom the symmeiry breaking=1 state. qulvarlance with
first appearance of the solution and the point where it gaingespect'to the symmgtrﬁ)g demands that this order param-
stability. Figure 10 shows the streamlines of this solution®ter satisfy the equation

whenL =3 and Ra2300. In Table | we present the critical
Rayleigh numbers for the secondary bifurcations giving rise
to both types of solutions; fdt=3 these occur at almost the __ . L o . .
same Rayleigh numbers, while for=3.8 they are substan- This equation _'S e_quwarla_nt with respect to the QperaMDn
tially farther apart. The former value is very close to the 1:2—W€* ™, equivariance with respect o—w requires that
resonance atl(,Ra)=(2.92,2055) and this allows us to iden- N _ )

tify the U , andR solutions with themean flowandtransition . TABLE I. The critical Rayleigh number for secondary bifurca-
solutions identified in Refs[6,7]. In contrast, wherL=3 tions from then=1 branchA,.

and Ra is reduced, the=3 solutions undergo a transcritical

W= — AW+ aw?+b|w[2w+- - -. (4)

bifurcation resulting in two branches of unstable solutions Ua R
(A, andB;) as already discussddee Figs. &) and §a)]. L=3 2206.96 2206.90
This bifurcation point falls on the line connecting the dia- L=3.8 4057 3545

monds in Fig. 6.
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the coefficients be real. These operations generate the groumstable eigenvalues while the st&e has three unstable
D5 and represent rotation by 120° and reflection, respeceigenvalues between the bifurcation and the saddle-node but
tively. The parametex is the bifurcation parameter and cor- four unstable eigenvalues beyond it. The eigenvalue in the
responds to the departure of the Rayleigh number from itR-invariant subspace is responsible for the subsequent bifur-
critical value at the bifurcation. Its sign was chosen to agreeation fromA, to the state labeleR in Fig. 8a).

with the numerical results: the pure=3 state[correspond- The secondary bifurcation from the=5 state to the
ing tow=0 in Eqg.(4)] has two unstable eigenvalues, each ofn=1 states seen in Fig. 3 can be analyzed in a similar way.
double multiplicity to the left of the bifurcation and only one The n=5 state is invariant under translations bys; such
unstable eigenvalugof double muiltiplicity to the right. translations may be viewed as rotations by/2. Because of
Consequently, igainsa pair of stable eigenvalues with in- the reflection symmetry of the=5 state this state has the
creasing Rayleigh number, as described by the linearizatiosymmetry Ds. The observed steady state bifurcation from

of Eq. (4) about then=3 statew=0. this state breaks this symmetry and can therefore be de-
Writing w= pe'? we obtain the two real equations scribed in terms of an order parameter that measures the
. , contribution from the symmetry-breakimg=1 state. We ob-
p=—\p+ap? cos P+bp3, 6=—ap sin 3. tain
The nontrivial fixed points are thus given &= 7/3,27/3 W= — AW+ aw*+b|w|2w+ - - -, (6)
modulo 27/3. We find two nontrivial solution branches
emerging from the bifurcation, given by where the coefficienta andb are again real. We choose the
_ ) sign of the bifurcation paramet&rto agree with the numeri-
A=*ap+bp?, ) cal results: the pur@=5 state[corresponding tav=0 in

Eq. (6)] has four unstable eigenvalues, each of double mul-

tiplicity, to the left of the bifurcation and three unstable ei-

genvaluegof double multiplicity to the right. Consequently
s=Tap+2bp? s==+3ap, it gainsa pair of stable eigenvalues with increasing Rayleigh

number, as described by the linearization of &j.about the

wherep satisfies Eq(5). Three observations follow imme- n=5 statew=0. In the partial differential equations this is a

diately: there are two nontrivial branches that emerge fronfi=1/5 (equivalentlyd=4/5) instability.

the bifurcation point, the bifurcation is transcritical, and the ~As before, Eq(6) can be written as two real equations

nontrivial solutions are unstable on either side of the bifur- ) .

cation. In fact, regardless of the sign afeach branch has p=—\p+ap® cosH+bp®, 6=—ap’ sin 5.

one stable and one unstable eigenvalue, and these eigenval- S . .

ues are exchanged across the bifurcation. Moreover, one g nontrivial fixed points are thus given tiy=/5,27/5

the nontrivial solutions turns around with increasing ampli-modulo 27/5, and we find twopairs of nontrivial solution

tude. This occurs at a saddle-node bifurcation where a furthd¥ranches emerging from the bifurcation. These are given by

change in stability takes place. If we choose the sigre, bf

in accord with the numerical simulatiores<<0,0>0, we find

that it is the6=24/3 branch that undergoes the saddle-nod

bifurcation: at small amplitude, as measured byviRethe

branch has eigenvalues-(+) while beyond the saddle-

node bifurcation the eigenvalues are (+). In contrast the

bran(;h 0= 77/3 increages monotonically with increasit?_xg >0 and identify the larger amplitude bran¢bigenvalues
and its stability remains,—) throughout. The resulting +,—) with the B, branch and the smaller amplitude branch

b|fu.rcat|on tdlagra'rg |st'|de|ntt|c’§: to Fig(# atnc:jtfhe St?hb'“ty " %ﬁigenvalueskﬁr) with the C branch. Figure @) indicates
assighments are identical 1o those computed from the partigy o+ 1ne coefficiena is in fact small. A more detailed inves-

d|fferent!al equations. In p_artlcular we have Che.d.(ed th igation of the partial differential equations reveals that the
change in the sign of the eigenvalues of the nontrivial solu-

tions across the bifurcation at=0. Thus we can with con- Instability takes place in thp«-invariant subspace; in ad-

. . . . dition there are two distinct positive eigenvalues in each of
fidence identify the9= 7/3 branch with theA, state and the h ; :

. : -, R- P- f h h
0=2/3 state with theB; state. In fact the only difference the G-, R-, and P-invariant subspaces for both branches so

between the above description and the numerics lies in thtﬁq?t B, has 7 unstable eigenvalues, whiehas 8(see Sec.

presence of aadditionalunstable eigenvalue of double mul-

tiplicity on then=3 branch due to the prior loss of stability ,

to the n=2 state[see Fig. 8a)]. The midplane reflection B. The 1:3 spatial resonance

symmetry also introduces complications. In fact we find that We now turn attention to Fig.(B) and in particular to the
the (+,—) eigenvalues oA, and the ¢, +) eigenvalues of appearance of the disconnected brancmefl states and

B, lie in the G- and T,,«x-invariant subspaces, while each show that this type of behavior is a natural consequence of
solution also has a positive eigenvalue in tRe and the 1:3 spatial resonance. As shown in Appendix B the 1:3
P-invariant subspaces. These additional unstable eigenvaluessonance is described by the amplitude equations

become equal along either branch as the bifurcation point ) _

A =0 is approached. Thus numerically the stAiehas three v=_(u+ S)v+alv|?v+b|w|%+cwv? (7a

corresponding t&@= w/3,0=2/3, respectively. Each solu-
tion has two eigenvalues,

A= Fap3+bp?,

€nd correspond t@= 7/5,47/5 and 6=27/5,37/5, respec-
tively. In a bifurcation diagram showing Re as a function

of A each pair of solutions describes a pitchfork bifurcation,
both of which bifurcate in thesamedirection. We choosé
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w=uw+d|v|?w+ e|lw|?w+ fo?, (7b)

cf. [9,16]. Herev,w are the(complex amplitudes ofn=1 122

and n=3 modes, respectivelyy is the bifurcation param-
eter, ands represents an unfolding parameter that splits apart
the multiple bifurcation. These equations have rich dynami- 120
cal behavior partially described {®]. In the following we
focus on the behavior that corresponds to that seen in the
partial differential equations. g2
Equations (7) have the solution «,w)=(0w) corre-
sponding to a pur@= 3 state. This state obeys the equation -

W= uw+e|w|?w 1

and bifurcates supercritically at=0 providede<O. Its sta- 8
bility properties are specified by four eigenvalues one of

which is zero because of translation invariance. The remain- 0 T
ing three are 8|w|? andu + 8+ b|w|? (twice). The former is -4
stable for a supercritical branch; the latter vanishes at a sec-

ondary steady state instability to a mixed state consisting of

the n=3 mode with an admixture of an=1 mode. We

have seen above that such a bifurcatiotramscritical [Fig. 4
8(a)].
In the following we shall emphasize theybrid modes. T
These are steady state solutions of E@swith vw#0. We - n=>3
write v=re'’,w=pe'?,y= ¢— 36, obtaining
. - n:]
r=(u+8)r+ard+bp?r+cr?p cosy, (8a)
) € 2
p=up+drip+ep3+fri cosy, (8b)
LI o
z,b——;(fr +3cp2)sin . (80 14
It follows that there are two families of hybrid modes given 1
by ¢=0,7. In the following we refer to these a3, ,, re-
spectively. Note that both af@ symmetric. 0 N L L B B
These states obey 0 4 8 12 16 20
w+d+ar’+bp?+crp=0, (9a) M
FIG. 11. Bifurcation diagrams=p?+r? vs u obtained from
,up+dr2p+ep3i fr3=0. (9b) the amplitude Eq(7) for (a) >0, (b) §<0. (a) shows the tran-

) ) o ) scritical bifurcation from then=3 state(inset shows a detailvhile
As a result the amplitude ratig=p/r satisfies the single (b) shows the disconnectat=1 branch. These figures should be

cubic equation compared with Figs. @) and 8b), respectively. For the coefficients
see text.
(u+ & F+[(u+8)d—pall—ucl’+[(u+ de—ub]®
=0. coefficients was guided by the coefficient values computed

by MF for o=«. These have been interpolated to obtain

Consequently, there are at most three solution branches w#lues corresponding toL=3.647: a=—1.5205, b=
any given value ofu with {>0(<0) corresponding to —10.033, c=-0.82498, d=—-9.0393, e=—11.8845f=
Ho.». The bifurcation from the conduction state (0,0) to the —0.2421. Since our calculations are carried out substantially
hybrid mode thus takes place at=—¢6 ({=0) and is su- far from the mode interaction point correspondingue- &
percritical if a<O. =0 we do not expect these values to reproduce our results.

The stability of this branch is readily computed: bothIn Fig. 11 we show the results obtained usira=
steady-state bifurcations corresponding to saddle-node bifur-4.5205, e= —5.8845, and retaining the MF values for the
cations or the termination of the=1 branch on then=3 remaining coefficients. The figures reveal bifurcation dia-
are present; Hopf bifurcations are also possible. Rather thagrams in excellent qualitative agreement with those of Fig. 8.
providing a detailed discussion of these equations we denin particular, for6>0 (i.e.,L<L, 5 we find the transcritical
onstrate below that the equations do describe the transitiobifurcation from then=3 state, while for6<0 (L>L, 3
from Fig. 8a) to Fig. 8b) asL is increased. Our choice of we recover the disconnected=1 branch seen in Fig.(B).
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The amplitude equations also allow us to determine the nawo points for their study of the Rayleigh-Bard problem
ture of the transition between these two diagrams. Setling with no-slip boundary conditions. Although the range of va-
=0 we find that Eqs(7) reduce to four straight lines through lidity of this approach is limited we find that the results
n=0. One of these is th@=3 branch, which is always remain qualitatively correct for Rayleigh numbers smaller
present. The other three lines all corresponatol states. than that for the next important resonance, the 1:5 resonance.
We find that ag 8| —0 the secondary bifurcations approach The latter work is closer in spirit to that of the present paper,
zero amplitude. AsS passes through zero and the order inbut differs from it in that the primary instability is typically
which the primary bifurcations take place changes the secsubcritical. We have focused on the stability properties of
ondaryn=1 branches present fa?>0 detach from then ~ secondary solutions arising from resonances of typek1:2
=3 branch producing a disconnected paimef1 branches +1 with k=1 andk=2. These resonances give rise to new
for §<0. We conclude that the amplitude equations are can=1 hybrid solutions involving both one ank2 1 pairs of
pable of reproducing much of the structure revealed in theolls. These solutions branch with increasing spatial peliod
our numerical study, although they miss several importanfrom the conduction state and have the same symmetries as a
secondary instabilities that play an important role in the stasingle pair of rolls. For spatial periods smaller than that
bilization of the finite amplitude solution branches at moder-corresponding to a 1:3 resonance we found that the hybrid
ate distance from the mode interaction pdictt Fig. 8). solutions terminate on the pune=3 (k=1) state via a tran-
scritical bifurcation. In contrast in the 1:5 interaction both
hybrid modes emerge from the=5 (k=2) state in the
same direction. Additional interactions of the form

In this paper we have examined in detail both the exis— 1:n,n>2, were also considered. These were found to be
tence and stability properties of different time-independentesponsible for subcritical bifurcations from a purestate
solutions of the partial differential equations describing two-and gave rise to a state with only reflection symmetry. Such
dimensional Rayleigh-Beard convection with periodic @ bifurcation also occurs in the Eckhaus analy$].
boundary conditions in the horizontal and identical no-slip  Throughout the paper we emphasized the important role
boundary conditions at top and bottom. The paper identifie®layed by the midplane reflection symmetry. We have seen
a number of complications that arise in the wave numbeghat this symmetry is responsible for the importance of the
selection process as a result of the presence of midplanE3 resonance. This is so despite the fact that the 1:2 reso-
reflection symmetry. These appear already at moderate Raf)ance occurs at lower Rayleigh numbers and is a conse-
leigh numbers. To appreciate the significance of our results fluence of the fact that the leading order resonant term in the
is helpful to compare our Fig. 8 with an Eckhaus analysis inl:2 interaction is ohigherorder than that in the 1:3 interac-
which this symmetry is absent, summarized in Fig. 2 of Refltion. This in turn is a consequence of the fact that in the latter
[10]. Although the two sets of figures have broad similaritiescase the two interacting modes have similar symmetries and
they differ substantially in detail. In the Eckhaus picture thehence interact strongly; in contrast in the 1:2 resonance the
second mode to go unstable acquires the stability at a sefv0 pure modes have different symmetries and the interac-
ondary pitchfork; in our problem two bifurcations are neces-tion between them must proceed via mixed modes, and this
sary, one to anR-symmetric state and the second to ais so for anyk:k+ 1 interaction in systems with Neumann or
P-symmetric state accompanied by a mean flow with an anPeriodic boundary condition§17]. At second order such
tisymmetric profile. The mode acquires stability only aftermodes generate modes with wave numbers 1 dntl 22 of
the second of these, as found already in RE§s7]. Such a which the former represents a large scale recirculating flow.
state is absent from the Eckhaus description. In both figure§uch flows are therefore associated with all mixed states of
the third unstable mode requires two bifurcations before acthis type[18]. With stress-free boundary conditions at top
quiring stability. However, in the Eckhaus case both areand bottom these mixed modes may subsequently undergo a
simple pitchforks to reflection-symmetric states while in ourParity-breaking bifurcation to drifting states called traveling
Fig. 8a) the first of these is transcritical and the reflection-waves[7], although we have not found such solutions with
symmetric state appears only in a tertiary bifurcation. It isn0-slip boundary conditions. Note that for sufficiently small
temptmg to surmise that our F|g(£ would Co”apse into Prandtl numbers travelin@.nd modulated tl’avelir)gNaves
Fig. 2(b) of Ref. [10] if the midplane reflection symmetry are present in the 1:3 resonance as Well Such time-
characteristic of the present problem were absent. Similaflependent states are absentdor 10. For this Prandtl num-
statements can be made about our Fig).8Here the domi-  ber stable time-dependent states are present only at substan-
nant new effect is the fact that tiég branch is disconnected tially larger Rayleigh numberi$]. These states are typically
from the trivial solution. We have seen that this is an effectchaotic but have a nonzero time-averaged mean flow remi-
of the 1:3 resonance and conclude thatitirel states stud- Niscent of that present in the experimefit§ In contrast, the
ied by Boltonet al.[14] and Praet al.[5] do not necessarily —States with nonzero mean flow present at the moderate Ray-
bifurcate from the conduction state: when the spatial periodeigh numbers studied here are all steady but unstable. How-
L exceeds that corresponding to the 1:3 resonarce ( €Ver, despite this fact they play an important role in the wave
=3.647) such solutions appear in turning point bifurcationshumber selection process.
as the Rayleigh number is increased. In this respect our cal-

V. CONCLUSIONS

culations extend earlier work by Mizushima and Fujimura A
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9703684. roll state split into four classes, those that preserve the sym-
metry G=D, and those that preserve the shift-reflétand
APPENDIX A: CONVECTION ROLLS P symmetries, respectively, as discussed in RgBs21].
AND THEIR SYMMETRIES This is so for both steady-state instabilities and Hopf bifur-

. ) ] ) cations. Note that to reach these conclusions it is not neces-
In this appendix we briefly summarize some group-sary to write down explicit expressions either for the roll

theoretic predictions about the symmetries of convectionstate or for the perturbations. In particular these conclusions
rolls and the types of secondary bifurcations that are allowe@pply tofully nonlinear roll states.

by these symmetries. These predictions can be made without
an explicit representation of the roll state.

As pointed out in Sec. Il the symmetry of the equations
and boundary conditions is the gro@{2)X Z,. The trivial
(CondUCtiOI) solution is invariant under this group. Consider In this appendix we summarize some well-known but
first the primary bifurcation from this state. This bifurcation nonetheless important properties ofn_’]_spatia| resonances.
is a steady-state bifurcation and hence is described by a cony all cases we assume that (RRa,)/Ra <1, (L
plex amplitudeA e C, such that near onsgt5] —Ly,)/L1,<1 and write the stream functiop in the form

APPENDIX B: AMPLITUDE EQUATIONS
FOR SPATIAL RESONANCES

X(X,Z,t)ZReA(t)eian(Z)+ HR X(X,Z,t)z Re(iveikx+iweinkX)f(z)+ .

Here f(z) is the vertical eigenfunction, assumed to be eve

in z=0. This solution describes the roll state, i pairs of r\—|eref(z) is the vertical eigenfunctiofassumed to be even

. . . . in z=0) andv andw denote the complex amplitudes of the
rolls. By choosing the spatial period to berth instead of two modes. Since the system Hag2) symmetry these am-

2 we can sen=1 and focus on the symmetries of a single litudes must satisfy equations equivariant with respect to
pair of rolls. This is the smallest possible period and repre-p q q P

sents one wavelength of the pattern. Sincés a pseudo- the following two operations,
scalar under reflections the gro@(2)xZ, acts onC as

follows: (v,w)—(ve'!

we™) o (v,w)— (v,w),

translationsT,;: A—A€', corresponding, respectively, to translations x+1 and re-

(A1) flections x— —x. As in Appendix A we can sek=1 by
choosing the basic period appropriately. The most general
equations satisfying this requirement take the form

reflectionsinx=0 Ry: A——A,
reflectionsinz=0 «: A——A.

By choosing the origink=0 appropriately we can také to _

be pure imaginary, saydA=iA,. This solution is clearly in- v=po+qwo"t,  w=rw+su",
variant undeR,; thus the roll state is symmetric with respect
to reflections in a vertical plane through a node. Moreoverwherep, ... s arereal invariant functions, i.e., functions of

both x and T act by —1 and commute so thal .« is a the three elementary invariants|?, |w|?, and Rev"w. To

second symmetry. It is now easy to check that these are th@ird order in the amplitudes we therefore h41é]

only independent symmetries oA,. Since this solution is

specified by a single real variable, viAg, the equivariant

branching lemm419] guarantees the existence of a primary

solution branch with the symmetiy,, generated byr, and .

T..«. Note thatT , is a translation by half a wavelength, and w= pw+d|v[*w+elw|?w+fo".

that U=0 for this solution. The latter conclusion follows

from the requirement thafl (z) = —U(z), which in turn fol-  Here u is the bifurcation parameter antlrepresents an un-

lows from the symmetnR,,. folding parameter that splits apart the multiple bifurcation. In
Consider now the operatioR=T,,,R,T_,,o«x. Thisis a the following we focus in the cases=2 (1:2 resonangeand

reflection inz=0 followed by a reflection ix= /2, instead n=3 (1:3 resonancdeIn both cases there is a puresolution

of a reflection inx=0 (see Sec. )l One can easily check of the form @,w)=(0w) but no corresponding solution

thatiAg is invariant undelP so thatP is another symmetry (v,w)=(v,0). The dynamics of the=2 equations are ana-

of the primary roll state. Note thaP=T_,RoT.»T_,.« lyzed in detail in[8] while then=3 case is studied if9].

=R, T .« so thatP is not anewsymmetry. As shown in Sec. In the present problem the symmetry grolipis O(2)

Il, P is also a symmetry of aimdividual roll; this symmetry =~ XZ, and notO(2). The midplane reflectionk e Z, takes

is often called goint symmetry. As a consequence of “hid- (v,w) into (—v,—w) wheneverf(z) is even; otherwise it

den” symmetry[20] the above considerations also apply to ahas no effect. This is because the stream funcjjois a

roll solution computed with Neumann boundary conditionspseudoscalar under reflections. Sinfde) is even for the

atx=0 andx=r. modes of interest here the extra reflection cannot be omitted.
TheD, symmetry of the roll state can be broken in one of This requires a change in the amplitude equations describing

three ways. This is because the grddiphas three nontrivial the 1:2 resonance, which now repd

v=(p+8)v+alv|? +b|w|% +cw" 1,
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i)Z(M‘*‘ 5)v+a|v|20+b|w|2v+cw2v_3, cates from the trivial stat_e. This solution h_as the sam.e sym—
metry as then=3 solution and hence interacts with it
strongly in the nonlinear regime; no intermediate branches of
mixed parity are necessary. For this reason the 1:3 resonance
In these equations we have retained only the lowest ordds the dominant resonance for problems with midplane re-
resonant terms; three other nonresonant fifth order terms iflection symmetry.
each equation have been omitted. Observe that the midplane The derivation of the mode interaction equations given
reflection symmetry has had a dramatic effect on the strucabove is valid only in the neighborhood of an appropriate
ture of these equations. Pume=1 solutions ¢,0) now exist. ~ codimension-two point (R L), namely, the intersection
Moreover, pairs ofmixed modes of the form ,w), vw  points of the neutral stability curves shown in Fig. 1. In this
#0, and symmetrie® andR bifurcate simultaneously from derivation the two unfolding parametefsalled « and § in
the pure modes, and are responsible for the stabilization ddec. IV Q enter in the linear terms only. Under appropriate
both pure modes at larger amplitud@$. As shown by Dan- nondegeneracy conditions the nonlinear coefficients can be
gelmayr[16] these properties are common to all so-calledcalculatedat the multiple bifurcation pointii.e., at u=4
weak spatial resonances. Thus the presence of the midplare0) and hence arnedependenof both the Rayleigh number
reflection symmetry is responsible for changing a strong spaand the spatial period. The resulting equations are formally
tial resonance into a weak one. valid when (Ra Ra,)/Ra,<1,(L—Ly,)/Liy<1. If

The situation is quite different when=3. The corre- these conditions are not satisfied the amplitude equations
sponding equations already commute with the midplane reeannot be truncated and the results may be affected by other
flection and thus require no modification. The lowest ordemmodes not included. For this reason the full partial differen-
resonant terms are cubic. The resulting equations have a putial equations must be used to explore the effects of spatial
n=3 solution (Ow) but no solution of the formy,0). In-  resonances away from the codimension-two points, as in the
stead there is a hybrid solutiow (), vw=#0, that bifur-  present paper.

w=puw+d|v|2w+ e|W|2W+fv4W.
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